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■ Now completing its first year, the High-Perfor-
mance Knowledge Bases Project promotes technol-
ogy for developing very large, flexible, and
reusable knowledge bases. The project is supported
by the Defense Advanced Research Projects Agency
and includes more than 15 contractors in univer-
sities, research laboratories, and companies. The
evaluation of the constituent technologies centers
on two challenge problems, in crisis management
and battlespace reasoning, each demanding pow-
erful problem solving with very large knowledge
bases. This article discusses the challenge prob-
lems, the constituent technologies, and their inte-
gration and evaluation.

Although a computer has beaten the
world chess champion, no computer has
the commonsense of a six-year-old

child. Programs lack knowledge about the
world sufficient to understand and adjust to
new situations as people do. Consequently,
programs have been poor at interpreting and
reasoning about novel and changing events,
such as international crises and battlefield sit-
uations. These problems are more open ended
than chess. Their solution requires shallow
knowledge about motives, goals, people, coun-
tries, adversarial situations, and so on, as well
as deeper knowledge about specific political
regimes, economies, geographies, and armies. 

The High-Performance Knowledge Base
(HPKB) Project is sponsored by the Defense
Advanced Research Projects Agency (DARPA)
to develop new technology for knowledge-
based systems.1 It is a three-year program, end-
ing in fiscal year 1999, with funding totaling
$34 million. HPKB technology will enable
developers to rapidly build very large knowl-
edge bases—on the order of 106 rules, axioms,
or frames—enabling a new level of intelligence
for military systems. These knowledge bases
should be comprehensive and reusable across

many applications, and they should be main-
tained and modified easily. Clearly, these goals
require innovation in many areas, from knowl-
edge representation to formal reasoning and
special-purpose problem solving, from knowl-
edge acquisition to information gathering on
the web to machine learning, from natural lan-
guage understanding to semantic integration
of disparate knowledge bases. 

For roughly one year, HPKB researchers have
been developing knowledge bases containing
tens of thousands of axioms concerning crises
and battlefield situations. Recently, the tech-
nology was tested in a month-long evaluation
involving sets of open-ended test items, most
of which were similar to sample (training)
items but otherwise novel. Changes to the cri-
sis and battlefield scenarios were introduced
during the evaluation to test the comprehen-
siveness and flexibility of knowledge in the
HPKB systems. The requirement for compre-
hensive, flexible knowledge about general sce-
narios forces knowledge bases to be large. Chal-
lenge problems, which define the scenarios
and thus drive knowledge base development,
are a central innovation of HPKB. This article
discusses HPKB challenge problems, technolo-
gies and integrated systems, and the evaluation
of these systems. 

The challenge problems require significant
developments in three broad areas of knowl-
edge-based technology. First, the overriding
goal of HPKB—to be able to select, compose,
extend, specialize, and modify components
from a library of reusable ontologies, common
domain theories, and generic problem-solving
strategies—is not immediately achievable and
requires some research into foundations of
very large knowledge bases, particularly
research in knowledge representation and
ontological engineering. Second, there is the
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Often, one will accept an answer that is
roughly correct, especially when the alterna-
tives are no answer at all or a very specific but
wrong answer. This is Lenat and Feigenbaum’s
breadth hypothesis: “Intelligent performance
often requires the problem solver to fall back
on increasingly general knowledge, and/or to
analogize to specific knowledge from far-flung
domains” (Lenat and Feigenbaum 1987, p.
1173). We must, therefore, augment high-pow-
er knowledge-based systems, which give spe-
cific and precise answers, with weaker but ade-
quate knowledge and inference. The inference
methods might not all be sound and complete.
Indeed, one might need a multitude of meth-
ods to implement what Polya called plausible
inference. HPKB encompasses work on a vari-
ety of logical, probabilistic, and other infer-
ence methods. 

It is one thing to recognize the need for
commonsense knowledge, another to inte-
grate it seamlessly into knowledge-based sys-
tems. Lenat observes that ontologies often are
missing a middle level, the purpose of which is
to connect very general ontological concepts
such as human and activity with domain-specif-
ic concepts such as the person who is responsible
for navigating a B-52 bomber. Because HPKB is
grounded in domain-specific tasks, the focus of
much ontological engineering is this middle
layer. 

The Participants
The HPKB participants are organized into three
groups: (1) technology developers, (2) integra-
tion teams, and (3) challenge problem devel-
opers. Roughly speaking, the integration teams
build systems with the new technologies to
solve challenge problems. The integration
teams are led by SAIC and Teknowledge. Each
integration team fields systems to solve chal-
lenge problems in an annual evaluation. Uni-
versity participants include Stanford Universi-
ty, Massachusetts Institute of Technology
(MIT), Carnegie Mellon University (CMU),
Northwestern University, University of Massa-
chusetts (UMass), George Mason University
(GMU), and the University of Edinburgh
(AIAI). In addition, SRI International, the Uni-
versity of Southern California Information Sci-
ences Institute (USC-ISI), the Kestrel Institute,
and TextWise, Inc., have developed important
components. Information Extraction and
Transport (IET), Inc., with Pacific Sierra
Research (PSR), Inc., developed and evaluated
the crisis-management challenge problem, and
Alphatech, Inc., is responsible for the battle-
space challenge problem.

problem of building on these foundations to
populate very large knowledge bases. The goal
is for collaborating teams of domain experts
(who might lack training in computer science)
to easily extend the foundation theories,
define additional domain theories and prob-
lem-solving strategies, and acquire domain
facts. Third, because knowledge is not enough,
one also requires efficient problem-solving
methods. HPKB supports research on efficient,
general inference methods and optimized task-
specific methods.

HPKB is a timely impetus for knowledge-
based technology, although some might think
it overdue. Some of the tenets of HPKB were
voiced in 1987 by Doug Lenat and Ed Feigen-
baum (Lenat and Feigenbaum 1987), and some
have been around for longer. Lenat’s CYC Pro-
ject has also contributed much to our under-
standing of large knowledge bases and ontolo-
gies. Now, 13 years into the CYC Project and
more than a decade after Lenat and Feigen-
baum’s paper, there seems to be consensus on
the following points:

The first and most intellectually taxing task
when building a large knowledge base is to
design an ontology. If you get it wrong, you
can expect ongoing trouble organizing the
knowledge you acquire in a natural way.
Whenever two or more systems are built for
related tasks (for example, medical expert sys-
tems, planning, modeling of physical process-
es, scheduling and logistics, natural language
understanding), the architects of the systems
realize, often too late, that someone else has
already done, or is in the process of doing, the
hard ontological work. HPKB challenges the
research community to share, merge, and col-
lectively develop large ontologies for signifi-
cant military problems. However, an ontology
alone is not sufficient. Axioms are required to
give meaning to the terms in an ontology.
Without them, users of the ontology can inter-
pret the terms differently. 

Most knowledge-based systems have no
common sense; so, they cannot be trusted.
Suppose you have a knowledge-based system
for scheduling resources such as heavy-lift heli-
copters, and none of its knowledge concerns
noncombatant evacuation operations. Now,
suppose you have to evacuate a lot of people.
Lacking common sense, your system is literally
useless. With a little common sense, it could
not only support human planning but might
be superior to it because it could think outside
the box and consider using the helicopters in
an unconventional way. Common sense is
needed to recognize and exploit opportunities
as well as avoid foolish mistakes.
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Challenge Problems
A programmatic innovation of HPKB is chal-
lenge problems. The crisis-management chal-
lenge problem, developed by IET and PSR, is
designed to exercise broad, relatively shallow
knowledge about international tensions. The
battlespace challenge problem, developed by
Alphatech, Inc., has two parts, each designed
to exercise relatively specific knowledge about
activities in armed conflicts. Movement analysis
involves interpreting vehicle movements
detected and tracked by idealized sensors. The
workaround problem is concerned with finding
military engineering solutions to traffic-
obstruction problems, such as destroyed
bridges and blocked tunnels. 

Good challenge problems must satisfy sever-
al, often conflicting, criteria. A challenge prob-
lem must be challenging: It must raise the bar
for both technology and science. A problem
that requires only technical ingenuity will not
hold the attention of the technology develop-
ers, nor will it help the United States maintain
its preeminence in science. Equally important,
a challenge problem for a DARPA program
must have clear significance to the United
States Department of Defense (DoD). Chal-
lenge problems should serve for the duration
of the program, becoming more challenging
each year. This continuity is preferable to
designing new problems every year because
the infrastructure to support challenge prob-
lems is expensive.

A challenge problem should require little or
no access to military subject-matter experts. It
should not introduce a knowledge-acquisition
bottleneck that results in delays and low pro-
ductivity from the technology developers. As
much as possible, the problem should be solv-
able with accessible, open-source material. A
challenge problem should exercise all (or
most) of the contributions of the technology
developers, and it should exercise an integra-
tion of these technologies. A challenge prob-
lem should have unambiguous criteria for
evaluating its solutions. These criteria need
not be so objective that one can write algo-
rithms to score performance (for example,
human judgment might be needed to assess
scores), but they must be clear and they must
be published early in the program. In addition,
although performance is important, challenge
problems that value performance above all else
encourage “one-off” solutions (a solution
developed for a specific problem, once only)
and discourage researchers from trying to
understand why their technologies work well
and poorly. A challenge problem should pro-
vide a steady stream of results, so progress can

be assessed not only by technology developers
but also by DARPA management and involved
members of the DoD community. 

The HPKB challenge problems are designed
to support new and ongoing DARPA initiatives
in intelligence analysis and battlespace infor-
mation systems. Crisis-management systems
will assist strategic analysts by evaluating the
political, economic, and military courses of
action available to nations engaged at various
levels of conflict. Battlespace systems will sup-
port operations officers and intelligence ana-
lysts by inferring militarily significant targets
and sites, reasoning about road network traffi-
cability, and anticipating responses to military
strikes. 

Crisis-Management 
Challenge Problem
The crisis-management challenge problem is
intended to drive the development of broad,
relatively shallow commonsense knowledge
bases to facilitate intelligence analysis. The
client program at DARPA for this problem is
Project GENOA—Collaborative Crisis Under-
standing and Management. GENOA is intended
to help analysts more rapidly understand
emerging international crises to preserve U.S.
policy options. Proactive crisis management—
before a situation has evolved into a crisis that
might engage the U.S. military—enables more
effective responses than reactive management.
Crisis-management systems will assist strategic
analysts by evaluating the political, economic,
and military courses of action available to
nations engaged at various levels of conflict.

The challenge problem development team
worked with GENOA representatives to identify
areas for the application of HPKB technology.
This work took three or four months, but the
crisis-management challenge problem specifi-
cation has remained fairly stable since its ini-
tial release in draft form in July 1997.

The first step in creating the challenge prob-
lem was to develop a scenario to provide con-
text for intelligence analysis in time of crisis.
To ensure that the problem should require
development of real knowledge about the
world, the scenario includes real national
actors with a fictional yet plausible story line.
The scenario, which takes place in the Persian
Gulf, involves hostilities between Saudi Arabia
and Iran that culminate in closing the Strait of
Hormuz to international shipping. 

Next, IET worked with experts at PSR to
develop a description of the intelligence analy-
sis process, which involves the following tasks:
information gathering—what happened, situ-
ation assessment—what does it mean, and sce-
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rent and a historical context. Crises can be rep-
resented as events or as larger episodes tracking
the evolution of a conflict over time, from
inception or trigger, through any escalation, to
eventual resolution or stasis. The representa-
tions being developed in HPKB are intended to
serve as a crisis corporate memory to help ana-
lysts discover historical precedents and analo-
gies for actions. Much of the challenge-prob-
lem specification is devoted to sample
questions that are intended to drive the devel-
opment of general models for reasoning about
crisis events. 

Sample questions are embedded in an ana-
lytic context. The question “What might hap-
pen next?” is instantiated as “What might
happen following the Saudi air strikes?” as
shown in figure 1. Q51 is refined to Q83 in a
way that is characteristic of the analytic
process; that is, higher-level questions are
refined into sets of lower-level questions that
provide detail. 

The challenge-problem developers (IET with
PSR) developed an answer key for sample ques-
tions, a fragment of which is shown in figure 2.
Although simple factual questions (for exam-
ple, “What is the gross national product of the
United States?”) have just one answer; ques-
tions such as Q53 usually have several. The
answer key actually lists five answers, two of
which are shown in figure 2. Each is accompa-
nied by suitable explanations, including source
material. The first source (Convention on the
Law of the Sea) is electronic. IET maintains a
web site with links to pages that are expected to
be useful in answering the questions. The sec-
ond source is a fragment of a model developed
by IET and published in the challenge-problem
specification. IET developed these fragments to

nario development—what might happen next.
Situation assessment (or interpretation)

includes factors that pertain to the specific sit-
uation at hand, such as motives, intents, risks,
rewards, and ramifications, and factors that
make up a general context, or “strategic cul-
ture,” for a state actor’s behavior in interna-
tional relations, such as capabilities, interests,
policies, ideologies, alliances, and enmities.
Scenario development, or speculative predic-
tion, starts with the generation of plausible
actions for each actor. Then, options are eval-
uated with respect to the same factors for situ-
ation assessment, and a likelihood rating is
produced. The most plausible actions are
reported back to policy makers.

These analytic tasks afford many opportuni-
ties for knowledge-based systems. One is to use
knowledge bases to retain or multiply corpo-
rate expertise; another is to use knowledge and
reasoning to “think outside the box,” to gener-
ate analytic possibilities that a human analyst
might overlook. The latter task requires exten-
sive commonsense knowledge, or “analyst’s
sense,” about the domain to rule out implausi-
ble options.

The crisis-management challenge problem
includes an informal specification for a proto-
type crisis-management assistant to support ana-
lysts. The assistant is tested by asking ques-
tions. Some are simple requests for factual
information, others require the assistant to
interpret the actions of nations in the context
of strategic culture. Actions are motivated by
interests, balancing risks and rewards. They
have impacts and require capabilities. Interests
drive the formation of alliances, the exercise of
influence, and the generation of tensions
among actors. These factors play out in a cur-

III. What of significance might happen following the Saudi air strikes? 
B. Options evaluation
Evaluate the options available to Iran.

Close the Strait of Hormuz to shipping.
Evaluation: Probable
Motivation: Respond to Saudi air strikes and deter future strikes.
Capability:

(Q51) Can Iran close the Strait of Hormuz to international shipping? 
(Q83) Is Iran capable of firing upon tankers in the Strait of Hormuz? With what weapons? 

Negative outcomes: 
(Q53) What risks would Iran face in closing the strait?
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Figure 1. Sample Questions Pertaining to the Responses to an Event.



indicate the kinds of reasoning they would be
testing in the challenge problem. 

For the challenge-problem evaluation, held
in June 1998, IET developed a way to generate
test questions through parameterization. Test
questions deviate from sample questions in
specified, controlled ways, so the teams partic-
ipating in the challenge problem know the
space of questions from which test items will
be selected. This space includes billions of
questions so the challenge problem cannot be
solved by relying on question-specific knowl-
edge. The teams must rely on general knowl-
edge to perform well in the evaluation.
(Semantics provide practical constraints on the
number of reasonable instantiations of para-
meterized questions, as do online sources pro-
vided by IET.) To illustrate, Q53 is parameter-
ized in figure 3. Parameterized question 53,
PQ53, actually covers 8 of the roughly 100
sample questions in the specification. 

Parameterized questions and associated class
definitions are based on natural language, giv-
ing the integration teams responsibility for
developing (potentially different) formal rep-
resentations of the questions. This decision
was made at the request of the teams. An
instance of a parameterized question, say,
PQ53, is mechanically generated, then the
teams must create a formal representation and
reason with it—without human intervention. 

Battlespace Challenge Problems 
The second challenge-problem domain for
HPKB is battlespace reasoning. Battlespace is an
abstract notion that includes not only the

PQ53 [During/After <TimeInterval>,] what {risks, rewards}
would <InternationalAgent> face in <InternationalAction-
Type>? 

<InternationalActionType> =
{[exposure of its] {supporting, sponsoring}

<InternationalAgentType> in <InternationalAgent2>, 
successful terrorist attacks against <InternationalAgent2>’s

<EconomicSector>, 
<InternationalActionType>(PQ51), 
taking hostage citizens of <InternationalAgent2>, 
attacking targets <SpatialRelationship> 
<InternationalAgent2> with <Force>}

<InternationalAgentType> =
{terrorist group, dissident group, political party, humani-
tarian organization}

Articles

WINTER 1998   29

Answer(s):
1. Economic sanctions from {Saudi Arabia, GCC, U.S., U.N.}

• The closure of the Strait of Hormuz would violate an international norm promoting freedom of the seas and
would jeopardize the interests of many states. 

• In response, states might act unilaterally or jointly to impose economic sanctions on Iran to compel it to
reopen the strait.

• The United Nations Security Council might authorize economic sanctions against Iran.
2. Limited military response from {Saudi Arabia, GCC, U.S., others}…

Source(s):
• The Convention on the Law of the Sea. 
• (B5) States may act unilaterally or collectively to isolate and/or punish a group or state that violates interna-

tional norms. Unilateral and collective action can involve a wide range of mechanisms, such as intelligence
collection, military retaliation, economic sanction, and diplomatic censure/isolation.

Figure 2. Part of the Answer Key for Question 53.

Figure 3. A Parameterized Question Suitable for Generating 
Sample Questions and Test Questions.



form and an order of battle that describes the
structure and composition of the enemy forces
in the scenario region. 

Given these input, movement analysis com-
prises the following tasks:

First is to distinguish military from nonmil-
itary traffic. Almost all military traffic travels in
convoys, which makes this task fairly straight-
forward except for very small convoys of two
or three vehicles. Second is to identify the sites
between which military convoys travel, deter-
mine which of these sites are militarily signifi-
cant, and determine the types of each militar-
ily significant site. Site types include battle
positions, command posts, support areas, air-
defense sites, artillery sites, and assembly-stag-
ing areas.

Third is to identify which units (or parts of
units) in the enemy order of battle are partici-
pating in each military convoy. 

Fourth is to determine the purpose of each
convoy movement. Purposes include recon-
naissance, movement of an entire unit toward
a battle position, activities by command ele-
ments, and support activities. 

Fifth is to infer the exact types of the vehi-
cles that make up each convoy. About 20 types
of military vehicle are distinguished in the
enemy order of battle, all of which show up in
the scenario data.

To help the technology base and the integra-
tion teams develop their systems, a portion of
the simulation data was released in advance of
the evaluation phase, accompanied by an
answer key that supplied model answers for
each of the inference tasks listed previously. 

Movement analysis is currently carried out
manually by human intelligence analysts,
who appear to rely on models of enemy
behavior at several levels of abstraction. These
include models of how different sites or con-
voys are structured for different purposes and
models of military systems such as logistics
(supply and resupply). For example, in a logis-
tics model, one might find the following frag-
ment: “Each echelon in a military organiza-
tion is responsible for resupplying its
subordinate echelons. Each echelon, from bat-
talion on up, has a designated area for storing
supplies. Supplies are provided by higher ech-
elons and transshipped to lower echelons at
these areas.” Model fragments such as these
are thought to constitute the knowledge of
intelligence analysts and, thus, should be the
content of HPKB movement-analysis systems.
Some such knowledge was elicited from mili-
tary intelligence analysts during programwide
meetings. These same analysts also scripted
the simulation scenario. 

physical geography of a conflict but also the
plans, goals, and activities of all combatants
prior to, and during, a battle and during the
activities leading to the battle. Three battle-
space programs within DARPA were identified
as potential users of HPKB technologies: (1) the
dynamic multiinformation fusion program,
(2) the dynamic database program, and (3) the
joint forces air-component commander
(JFACC) program. Two battlespace challenge
problems have been developed.

The Movement-Analysis Challenge
Problem The movement-analysis challenge
problem concerns high-level analysis of ideal-
ized sensor data, particularly the airborne
JSTARS moving target indicator radar. This
Doppler radar can generate vast quantities of
information—one reading every minute for
each vehicle in motion within a 10,000-
square-mile area.2 The movement-analysis sce-
nario involves an enemy mobilizing a full divi-
sion of ground forces—roughly 200 military
units and 2000 vehicles—to defend against a
possible attack. A simulation of the vehicle
movements of this division was developed, the
output of which includes reports of the posi-
tions of all the vehicles in the division at 1-
minute intervals over a 4-day period for 18
hours each day. These military vehicle move-
ments were then interspersed with plausible
civilian traffic to add the problem of distin-
guishing military from nonmilitary traffic. The
movement-analysis task is to monitor the
movements of the enemy to detect and identi-
fy types of military site and convoy.

Because HPKB is not concerned with signal
processing, the input are not real JSTARS data
but are instead generated by a simulator and
preprocessed into vehicle tracks. There is no
uncertainty in vehicle location and no radar
shadowing, and each vehicle is always accu-
rately identified by a unique bumper number.
However, vehicle tracks do not precisely iden-
tify vehicle type but instead define each vehi-
cle as either light wheeled, heavy wheeled, or
tracked. Low-speed and stationary vehicles are
not reported.

Vehicle-track data are supplemented by
small quantities of high-value intelligence
data, including accurate identification of a few
key enemy sites, electronic intelligence reports of
locations and times at which an enemy radar is
turned on, communications intelligence reports
that summarize information obtained by mon-
itoring enemy communications, and human
intelligence reports that provide detailed infor-
mation about the numbers and types of vehi-
cle passing a given location. Other input
include a detailed road network in electronic

The second
challenge-
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domain for
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The Workaround Challenge Problem
The workaround challenge problem supports air-
campaign planning by the JFACC and his/her
staff. One task for the JFACC is to determine
suitable targets for air strikes. Good targets
allow one to achieve maximum military effect
with minimum risk to friendly forces and min-
imum loss of life on all sides. Infrastructure
often provides such targets: It can be sufficient
to destroy supplies at a few key sites or critical
nodes in a transportation network, such as
bridges along supply routes. However, bridges
and other targets can be repaired, and there is
little point in destroying a bridge if an avail-
able fording site is nearby. If a plan requires an
interruption in traffic of several days, and the
bridge can be repaired in a few hours, then
another target might be more suitable. Target
selection, then, requires some reasoning about
how an enemy might “work around” the dam-
age to the target. 

The task of the workaround challenge prob-
lem is to automatically assess how rapidly and
by what method an enemy can reconstitute or
bypass damage to a target and, thereby, help
air-campaign planners rapidly choose effective
targets. The focus of the workaround problem
in the first year of HPKB is automatic
workaround generation.

The workaround task involves detailed rep-
resentation of targets and the local terrain
around the target and detailed reasoning about
actions the enemy can take to reconstitute or
bypass this damage. Thus, the input to
workaround systems include the following ele-
ments:

First is a description of a target (for example,
a bridge or a tunnel), the damage to it (for
example, one span of a bridge is dropped; the
bridge and vicinity are mined), and key fea-
tures of the local terrain (for example, the
slope and soil types of a terrain cross section
coincident with the road near the bridge,
together with the maximum depth and the
speed of any river or stream the bridge crosses). 

Second is a specific enemy unit or capability
to be interdicted, such as a particular armored
battalion or supply trucks carrying ammuni-
tion.

Third is a time period over which this unit
or capability is to be denied access to the tar-
geted route. The presumption is that the ene-
my will try to repair the damage within this
time period; a target is considered to be effec-
tive if there appears to be no way for the ene-
my to make this repair. 

Fourth is a detailed description of the enemy
resources in the area that could be used to
repair the damage. For the most part, repairs to

battle damage are carried out by Army engi-
neers; so, this description takes the form of a
detailed engineering order of battle. 

All input are provided in a formal represen-
tation language. 

The workaround generator is expected to
provide three output: First is a reconstitution
schedule, giving the capacity of the damaged
link as a function of time since the damage was
inflicted. For example, the workaround gener-
ator might conclude that the capacity of the
link is zero for the first 48 hours, but thereafter,
a temporary bridge will be in place that can
sustain a capacity of 170 vehicles an hour. Sec-
ond is a time line of engineering actions that the
enemy might carry out to implement the
repair, the time these actions require, and the
temporal constraints among them. If there
appears to be more than one viable repair strat-
egy, a time line should be provided for each.
Third is a set of required assets for each time line
of actions, a description of the engineering
resources that are used to repair the damage
and pointers to the actions in the time line
that utilize these assets. The reconstitution
schedule provides the minimal information
required to evaluate the suitability of a given
target. The time line of actions provides an
explanation to justify the reconstitution
schedule. The set of required assets is easily
derived from the time line of actions and can
be used to suggest further targets for preemp-
tive air strikes against the enemy to frustrate its
repair efforts. 

A training data set was provided to help
developers build their systems. It supplied
input and output for several sample problems,
together with detailed descriptions of the cal-
culations carried out to compute action dura-
tions; lists of simplifying assumptions made to
facilitate these calculations; and pointers to
text sources for information on engineering
resources and their use (mainly Army field
manuals available on the World Wide Web). 

Workaround generation requires detailed
knowledge about what the capabilities of the
enemy’s engineering equipment are and how
it is typically used by enemy forces. For exam-
ple, repairing damage to a bridge typically
involves mobile bridging equipment, such as
armored vehicle-launched bridges (AVLBs),
medium girder bridges, Bailey bridges, or float
bridges such as ribbon bridges or M4T6
bridges, together with a range of earthmoving
equipment such as bulldozers. Each kind of
mobile bridge takes a characteristic amount of
time to deploy, requires different kinds of bank
preparation, and is “owned” by different eche-
lons in the military hierarchy, all of which

The challenge
problems are
solved by 
integrated 
systems 
fielded by
integration
teams led by
Teknowledge
and SAIC. 
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object-oriented format (Pease and Carrico
1997a, 1997b), and applications of this generic
semantics to domain-specific tasks are promis-
ing (Pease and Albericci 1998). The develop-
ment of ontologies for integrating manufactur-
ing planning applications (Tate 1998) and
work flow (Lee et al. 1996) is ongoing.

Another option for semantic integration is
software mediation (Park, Gennari, and Musen
1997). This software mediation can be seen as
a variant on pairwise integration, but because
integration is done by knowledge-based
means, one has an explicit expression of the
semantics of the conversion. Researchers at
Kestrel Institute have successfully defined for-
mal specifications for data and used these the-
ories to integrate formally specified software.
In addition, researchers at Cycorp have suc-
cessfully applied CYC to the integration of mul-
tiple databases.

The Teknowledge approach to integration is
to share knowledge among applications and
create new knowledge to support the challenge
problems. Teknowledge is defining formal
semantics for the input and output of each
application and the information in the chal-
lenge problems. 

Many concepts defy simple definitions.
Although there has been much success in
defining the semantics of mathematical con-
cepts, it is harder to be precise about the
semantics of the concepts people use every
day. These concepts seem to acquire meaning
through their associations with other con-
cepts, their use in situations and communica-
tion, and their relations to instances. To give
the concepts in our integrated system real
meaning, we must provide a rich set of associ-
ations, which requires an extremely large
knowledge base. CYC offers just such a knowl-
edge base.

CYC (Lenat 1995; Lenat and Guha 1990)
consists of an immense, multicontextual
knowledge base; an efficient inference engine;
and associated tools and interfaces for acquir-
ing, browsing, editing, and combining knowl-
edge. Its premise is that knowledge-based soft-
ware will be less brittle if and only if it has
access to a foundation of basic commonsense
knowledge. This semantic substratum of
terms, rules, and relations enables application
programs to cope with unforeseen circum-
stances and situations.

The CYC knowledge base represents millions
of hand-crafted axioms entered during the 13
years since CYC’s inception. Through careful
policing and generalizing, there are now
slightly fewer than 1 million axioms in the
knowledge base, interrelating roughly 50,000

affect the time it takes to bring the bridge to a
damage site and effect a repair. Because HPKB
operates in an entirely unclassified environ-
ment, U.S. engineering resources and doctrine
were used throughout. Information from
Army field manuals was supplemented by a
series of programwide meetings with an Army
combat engineer, who also helped construct
sample problems and solutions. 

Integrated Systems
The challenge problems are solved by integrat-
ed systems fielded by integration teams led by
Teknowledge and SAIC. Teknowledge favors a
centralized architecture that contains a large
commonsense ontology (CYC); SAIC has a dis-
tributed architecture that relies on sharing spe-
cialized domain ontologies and knowledge
bases, including a large upper-level ontology
based on the merging of CYC, SENSUS, and other
knowledge bases. 

Teknowledge Integration
The Teknowledge integration team comprises
Teknowledge, Cycorp, and Kestrel Institute. Its
focus is on semantic integration and the cre-
ation of massive amounts of knowledge.

Semantic Integration Three issues make
software integration difficult. Transport issues
concern mechanisms to get data from one
process or machine to another. Solutions
include sockets, remote-method invocation
(RMI), and CORBA. Syntactic issues concern how
to convert number formats, “syntactic sugar,”
and the labels of data. The more challenging
issues concern semantic integration: To integrate
elements properly, one must understand the
meaning of each. The database community
has addressed this issue (Wiederhold 1996); it
is even more pressing in knowledge-based sys-
tems.

The current state of practice in software inte-
gration consists largely of interfacing pairs of
systems, as needed. Pairwise integration of this
kind does not scale up, unanticipated uses are
hard to cover later, and chains of integrated
systems at best evolve into stovepipe systems.
Each integration is only as general as it needs
to be to solve the problem at hand.

Some success has been achieved in low-level
integration and reuse; for example, systems
that share scientific subroutine libraries or
graphics packages are often forced into similar
representational choices for low-level data.
DARPA has invested in early efforts to create
reuse libraries for integrating large systems at
higher levels. Some effort has gone into
expressing a generic semantics of plans in an
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atomic terms. Fewer than two percent of these
axioms represent simple facts about proper
nouns of the sort one might find in an
almanac. Most embody general consensus
information about the concepts. For example,
one axiom says one cannot perform volitional
actions while one sleeps, another says one can-
not be in two places at once, and another says
you must be at the same place as a tool to use
it. The knowledge base spans human capabili-
ties and limitations, including information on
emotions, beliefs, expectations, dreads, and
goals; common everyday objects, processes,
and situations; and the physical universe,
including such phenomena as time, space,
causality, and motion. 

The CYC inference engine comprises an epis-
temological and a heuristic level. The epistemo-
logical level is an expressive nth-order logical
language with clean formal semantics. The
heuristic level is a set of some three dozen spe-
cial-purpose modules that each contains its
own algorithms and data structures and can
recognize and handle some commonly occur-
ring sorts of inference. For example, one
heuristic-level module handles temporal rea-
soning efficiently by converting temporal rela-
tions into a before-and-after graph and then
doing graph searching rather than theorem
proving to derive an answer. A truth mainte-
nance system and an argumentation-based
explanation and justification system are tight-
ly integrated into the system and are efficient
enough to be in operation at all times. In addi-
tion to these inference engines, CYC includes
numerous browsers, editors, and consistency
checkers. A rich interface has been defined.

Crisis-Management Integration The cri-
sis-management challenge problem involves
answering test questions presented in a struc-
tured grammar. The first step in answering a
test question is to convert it to a form that CYC

can reason with, a declarative decision tree.
When the tree is applied to the test question
input, a CYC query is generated and sent to CYC. 

Answering the challenge problem questions
takes a great deal of knowledge. For the first
year’s challenge problem alone, the Cycorp
and Teknowledge team added some 8,000 con-
cepts and 80,000 assertions to CYC. To meet the
needs of this challenge problem, the team cre-
ated significant amounts of new knowledge,
some developed by collaborators and merged
into CYC, some added by automated processes. 

The Teknowledge integrated system in-
cludes two natural language components:
START and TextWise. The START system was cre-
ated by Boris Katz (1997) and his group at MIT.
For each of the crisis-management questions,

Teknowledge has developed a template into
which user-specified parameters can be insert-
ed. START parses English queries for a few of the
crisis-management questions to fill in these
templates. Each filled template is a legal CYC

query. TextWise Corporation has been devel-
oping natural language information-retrieval
software primarily for news articles (Liddy,
Paik, and McKenna 1995). Teknowledge
intends to use the TextWise knowledge base
information tools (KNOW-IT) to supply many
instances to CYC of facts discovered from news
stories. The system can parse English text and
return a series of binary relations that express
the content of the sentences. There are several
dozen relation types, and the constants that
instantiate each relation are WORDNET synset
mappings (Miller et al. 1993). Each of the con-
cepts has been mapped to a CYC expression,
and a portion of WORDNET has been mapped to
CYC. For those synsets not in CYC, the WORDNET

hyponym links are traversed until a mapped
CYC term is found.

Battlespace Integration Teknowledge
supported the movement-analysis workaround
problem.

Movement analysis: Several movement-
analysis systems were to be integrated, and
much preliminary integration work was done.
Ultimately, the time pressure of the challenge
problem evaluation precluded a full integra-
tion. The MIT and UMass movement-analysis
systems are described briefly here; the SMI and
SRI systems are described in the section enti-
tled SAIC Integrated Systems. 

The MIT MAITA system provides tools for
constructing and controlling networks of dis-
tributed-monitoring processes. These tools
provide access to large knowledge bases of
monitoring methods, organized around the
hierarchies of tasks performed, knowledge
used, contexts of application, the alerting of
utility models, and other dimensions. Individ-
ual monitoring processes can also make use of
knowledge bases representing commonsense
or expert knowledge in conducting their rea-
soning or reporting their findings. MIT built
monitoring processes for sites and convoys
with these tools.

The UMass group tried to identify convoys
and sites with very simple rules. Rules were
developed for three site types: (1) battle posi-
tions, (2) command posts, and (3) assembly-
staging areas. The convoy detector simply
looked for vehicles traveling at fixed distances
from one another. Initially, UMass was going
to recognize convoys from their dynamics, in
which the distances between vehicles fluctuate
in a characteristic way, but in the simulated
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soning process. For this reason, a hierarchical
task network (HTN) approach was taken. A
planning-specific ontology was defined within
the larger CYC ontology, and planning rules
only referenced concepts within this more
constrained context. The planning application
was essentially embedded in CYC. 

CYC had to be extended to represent com-
posite actions that have several alternative
decompositions and complex preconditions-
effects. Although it is not a commonsense
approach, AIAI decided to explore HTN plan-
ning because it appeared suitable for the
workaround domain. It was possible to repre-
sent actions, their conditions and effects, the
plan-node network, and plan resources in a
relational style. The structure of a plan was
implicitly represented in the proof that the
corresponding composite action was a relation
between particular sets of conditions and
effects. Once proved, action relations are
retained by CYC and are potentially reusable.
An advantage of implementing the AIAI plan-
ner in CYC was the ability to remove brittleness
from the planner-input knowledge format; for
example, it was not necessary to account for all
the possible permutations of argument order
in predicates such as bordersOn and between. 

SAIC Integrated System

SAIC built an HPKB integrated knowledge envi-
ronment (HIKE) to support both crisis-manage-
ment and battlespace challenge problems. The
architecture of HIKE for crisis management is
shown in figure 4. For battlespace, the architec-
ture is similar in that it is distributed and relies
on the open knowledge base connectivity
(OKBC) protocol, but of course, the compo-
nents integrated by the battlespace architecture
are different. HIKE’s goals are to address the dis-
tributed communications and interoperability
requirements among the HPKB technology
components—knowledge servers, knowledge-
acquisition tools, question-and-answering sys-
tems, problem solvers, process monitors, and so
on—and provide a graphic user interface (GUI)
tailored to the end users of the HPKB environ-
ment.

HIKE provides a distributed computing infra-
structure that addresses two types of commu-
nications needs: First are input and output
data-transportation and software connectivi-
ties. These include connections between the
HIKE server and technology components, con-
nections between components, and connec-
tions between servers. HIKE encapsulates infor-
mation content and data transportation
through JAVA objects, hypertext transfer proto-
col (HTTP), remote-method invocation (JAVA

data, the distances between vehicles remained
fixed. UMass also intended to detect sites by
the dynamics of vehicle movements between
them, but no significant dynamic patterns
could be found in the movement data. 

Workarounds: Teknowledge developed two
workaround integrations, one an internal
Teknowledge system, the other from AIAI at
the University of Edinburgh.

Teknowledge developed a planning tool
based on CYC, essentially a wrapper around
CYC’s existing knowledge base and inference
engine. A plan is a proof that there is a path
from the final goal to the initial situation
through a partially ordered set of actions. The
rules in the knowledge base driving the plan-
ner are rules about action preconditions and
about which actions can bring about a certain
state of affairs. There is no explicit temporal
reasoning; the partial order of temporal prece-
dence between actions is established on the
basis of the rules about preconditions and
effects. 

The planner is a new kind of inference
engine, performing its own search but in a
much smaller search space. However, each step
in the search involves interaction with the
existing inference engine by hypothesizing
actions and microtheories and doing asks and
asserts in these microtheories. This hypothe-
sizing and asserting on the fly in effect
amounts to dynamically updating the knowl-
edge base in the course of inference; this capa-
bility is new for the CYC inference engine. 

Consistent with the goals of HPKB, the
Teknowledge workaround planner reused CYC’s
knowledge, although it was not knowledge
specific to workarounds. In fact, CYC had never
been the basis of a planner before, so even stat-
ing things in terms of an action’s precondi-
tions was new. What CYC provided, however,
was a rich basis on which to build workaround
knowledge. For example, the Teknowledge
team needed to write only one rule to state “to
use something as a device you must have con-
trol over that device,” and this rule covered the
cases of using an M88 to clear rubble, a mine
plow to breach a minefield, a bulldozer to cut
into a bank or narrow the gap, and so on. The
reason one rule can cover so many cases is
because clearing rubble, demining an area,
narrowing a gap, and cutting into a bank are
all specializations of IntrinsicStateChange-
Event, an extant part of the CYC ontology. 

The AIAI workaround planner was also
implemented in CYC and took data from
Teknowledge’s FIRE&ISE-TO-MELD translator as its
input. The central idea was to use the scriptlike
structure of workaround plans to guide the rea-
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RMI), and database access (JDBC). Second, HIKE

provides for knowledge-content assertion and
distribution and query requests to knowledge
services.

The OKBC protocol proved essential. SRI
used it to interface the theorem prover SNARK to
an OKBC server storing the Central Intelli-
gence Agency (CIA) World Fact Book knowledge
base. Because this knowledge base is large, SRI
did not want to incorporate it into SNARK but
instead used the procedural attachment fea-
ture of SNARK to look up facts that were avail-
able only in the World Fact Book. MIT’s START

system used OKBC to connect to SRI’s OCELOT-
SNARK OKBC server. This connection will even-
tually give users the ability to pose questions
in English, which are then transformed to a
formal representation by START and shipped to
SNARK using OKBC; the result is returned using
OKBC. ISI built an OKBC server for their LOOM

system for GMU. SAIC built a front end to the
OKBC server for LOOM that was extensively
used by the members of the battlespace chal-
lenge problem team.

With OKBC and other methods, the HIKE

infrastructure permits the integration of new
technology components (either clients or
servers) in the integrated end-to-end HPKB sys-
tem without introducing major changes, pro-
vided that the new components adhere to the
specified protocols.

Crisis-Management Integration  The
SAIC crisis-management architecture is
focused around a central OKBC bus, as shown
in figure 4. The technology components pro-
vide user interfaces, question answering, and
knowledge services. Some components have
overlapping roles. For example, MIT’s START sys-
tem serves both as a user interface and a ques-
tion-answering component. Similarly, CMU’s
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to reuse knowledge whenever it made sense.
The SAIC team reused three knowledge bases:
(1) the HPKB upper-level ontology developed
by Cycorp, (2) the World Fact Book knowledge
base from the CIA, and the Units and Measures
Ontology from Stanford. Reusing the upper-
level ontology required translation, compre-
hension, and reformulation. The ontology was
released in MELD (a language used by Cycorp)
and was not directly readable by the SAIC sys-
tem. In conjunction with Stanford, SRI devel-
oped a translator to load the upper-level ontol-
ogy into any OKBC-compliant server. Once
loaded into the OCELOT server, the GKB editor
was used to comprehend the upper ontology.
The graphic nature of the GKB editor illuminat-
ed the interrelationships between classes and
predicates of the upper-level ontology. Because
the upper-level ontology represents functional
relationships as predicates but SNARK reasons
efficiently with functions, it was necessary to
reformulate the ontology to use functions
whenever a functional relationship existed.

Battlespace Integration The distributed
HIKE infrastructure is well suited to support an
integrated battlespace challenge problem as it
was originally designed: a single information
system for movement analysis, trafficability,
and workaround reasoning. However, the traffi-
cability problem (establishing routes for various
kinds of vehicle given the characteristics) was
dropped, and the integration of the other prob-
lems was delayed. The components that solved
these problems are described briefly later. 

Movement analysis: The movement-analy-
sis problem is solved by MIT’s monitoring,
analysis, and interpretation tools arsenal (MAI-
TA); Stanford University’s Section on Medical
Informatics’ (SMI) problem-solving methods;
and SRI International’s Bayesian networks. The
MIT effort was described briefly in the section
entitled Teknowledge Integration. Here, we
focus on the SMI and SRI movement-analysis
systems.

For scalability, SMI adopted a three-layered
approach to the challenge problem: The first
layer consisted primarily of simple, context-
free data processing that attempted to find
important preliminary abstractions in the data
set. The most important of these were traffic
centers (locations that were either the starting
or stopping points for a significant number of
vehicles) and convoy segments (a number of
vehicles that depart from the same traffic cen-
ter at roughly the same time, going in roughly
the same direction). Spotting these abstractions
required setting a number of parameters (for
example, how big a traffic center is). Once
trained, these first-layer algorithms are linear in

WEBKB supports both question answering and
knowledge services.

HIKE provides a form-based GUI with which
users can construct queries with pull-down
menus. Query-construction templates corre-
spond to the templates defined in the crisis-
management challenge problem specification.
Questions also can be entered in natural lan-
guage. START and the TextWise component
accept natural language queries and then
attempt to answer the questions. To answer
questions that involve more complex types of
reasoning, START generates a formal representa-
tion of the query and passes it to one of the
theorem provers.

The Stanford University Knowledge Systems
Laboratory ONTOLINGUA, SRI International’s
graphic knowledge base (GKB) editor, WEBKB,
and TextWise provide the knowledge service
components. The GKB editor is a graphic tool
for browsing and editing large knowledge bases,
used primarily for manual knowledge acquisi-
tion. WEBKB supports semiautomatic knowledge
acquisition. Given some training data and an
ontology as input, a web spider searches in a
directed manner and populates instances of
classes and relations defined in the ontology.
Probabilistic rules are also extracted. TextWise
extracts information from text and newswire
feeds, converting them into knowledge inter-
change format (KIF) triples, which are then
loaded into ONTOLINGUA. ONTOLINGUA is SAIC’s
central knowledge server and information
repository for the crisis-management challenge
problem. ONTOLINGUA supports KIF as well as
compositional modeling language (CML). Flow
models developed by Northwestern University
(NWU) answer challenge problem questions
related to world oil-transportation networks
and reside within ONTOLINGUA. Stanford’s system
for probabilistic object-oriented knowledge
(SPOOK) provides a language for class frames to
be annotated with probabilistic information,
representing uncertainty about the properties
of instances in this class. SPOOK is capable of rea-
soning with the probabilistic information based
on Bayesian networks.

Question answering is implemented in sev-
eral ways. SRI International’s SNARK and Stan-
ford’s abstract theorem prover (ATP) are first-
order theorem provers. WEBKB answers
questions based on the information it gathers.
Question answering is also accomplished by
START and TextWise taking a query in English as
input and using information retrieval to
extract the answers from text-based sources
(such as the web, newswire feeds).

The guiding philosophy during knowledge
base development for crisis management was
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the size of the data set and enabled SMI to use
knowledge-intensive techniques on the result-
ing (much smaller) set of data abstractions. 

The second layer was a repair layer, which
used knowledge of typical convoy behaviors
and locations on the battlespace to construct a
“map” of militarily significant traffic and traf-
fic centers. The end result was a network of
traffic connected by traffic. Three main tasks
remain: (1) classify the traffic centers, (2) figure
out what the convoys are doing, and (3) iden-
tify which units are involved. SMI iteratively
answered these questions by using repeated
layers of heuristic classification and constraint
satisfaction. The heuristic-classification com-
ponents operated independently of the net-
work, using known (and deduced) facts about
single convoys or traffic centers. Consider the
following rule for trying to identify a main
supply brigade (MSB) site (paraphrased into
English, with abstractions in boldface):

If we have a current site which is unclas-
sified 

and it’s in the Division support area,
and the traffic is high enough
and the traffic is balanced
and the site is persistent with no major
deployments emanating from it

then it’s probably an MSB

SMI used similar rules for the constraint-satis-
faction component of its system, allowing
information to propagate through the network
in a manner similar to Waltz’s (1975) well-
known constraint-satisfaction algorithm for
edge labeling.

The goal of the SRI group was to induce a
knowledge base to characterize and identify
types of site such as command posts and battle
positions. Its approach was to induce a
Bayesian classifier and use a generative model
approach, producing a Bayesian network that
could serve as a knowledge base. This model-
ing required transforming raw vehicle tracks
into features (for example, the frequency of
certain vehicles at sites, number of stops) that
could be used to predict sites. Thus, it was also
necessary to have hypothetical sites to test. SRI
relied on SMI to provide hypothetical sites,
and it also used some of the features that SMI
computed. As a classifier, SRI used tree-aug-
mented naive (TAN) Bayes (Friedman, Geiger,
and Goldszmidt 1997).

Workarounds: The SAIC team integrated
two approaches to workaround generation,
one developed by USC-ISI, the other by GMU. 

ISI developed course-of-action–generation
problem solvers to create alternative solutions
to workaround problems. In fact, two alterna-
tive course-of-action–generation problem solv-

ers were developed. One is a novel planner
whose knowledge base is represented in the
ontologies, including its operators, state
descriptions, and problem-specific informa-
tion. It uses a novel partial-match capability
developed in LOOM (MacGregor 1991). The oth-
er is based on a state-of-the-art planner (Veloso
et al. 1995). Each solution lists several engi-
neering actions for this workaround (for exam-
ple, deslope the banks of the river, install a
temporary bridge), includes information about
the sources used (for example, what kind of
earthmoving equipment or bridge is used), and
asserts temporal constraints among the indi-
vidual actions to indicate which can be execut-
ed in parallel. A temporal estimation-assess-
ment problem solver evaluates each of the
alternatives and selects one as the most likely
choice for an enemy workaround. This prob-
lem solver was developed in EXPECT (Swartout
and Gil 1995; Gil 1994). 

Several general battlespace ontologies (for
example, military units, vehicles), anchored
on the HPKB upper ontology, were used and
augmented with ontologies needed to reason
about workarounds (for example, engineering
equipment). Besides these ontologies, the
knowledge bases used included a number of
problem-solving methods to represent knowl-
edge about how to solve the task. Both ontolo-
gies and problem-solving knowledge were used
by two main problem solvers.

EXPECT’s knowledge-acquisition tools were
used throughout the evaluation to detect miss-
ing knowledge. EXPECT uses problem-solving
knowledge and ontologies to analyze which
information is needed to solve the task. This
capability allows EXPECT to alert a user when
there is missing knowledge about a problem
(for example, unspecified bridge lengths) or a
situation. It also helps debug and refine
ontologies by detecting missing axioms and
overgeneral definitions.

GMU developed the DISCIPLE98 system. DISCI-
PLE is an apprenticeship multistrategy learning
system that learns from examples, from expla-
nations, and by analogy and can be taught by
an expert how to perform domain-specific
tasks through examples and explanations in a
way that resembles how experts teach appren-
tices (Tecuci 1998). For the workaround
domain, DISCIPLE was extended into a baseline-
integrated system that creates an ontology by
acquiring concepts from a domain expert or
importing them (through OKBC) from shared
ontologies. It learns task-decomposition rules
from a domain expert and uses this knowledge
to solve workaround problems through hierar-
chical nonlinear planning. 
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ferent metrics. The test items for crisis manage-
ment were questions, and the test was similar
to an exam. Overall competence is a function
of the number of questions answered correctly,
but the crisis-management systems are also
expected to “show their work” and provide
justifications (including sources) for their
answers. Examples of questions, answers, and
justifications for crisis management are shown
in the section entitled Crisis-Management
Challenge Problem. 

Performance metrics for the movement-
analysis problem are related to recall and pre-
cision. The basic problem is to identify sites,
vehicles, and purposes given vehicle track
data; so, performance is a function of how
many of these entities are correctly identified
and how many incorrect identifications are
made. In general, identifications can be
marked down on three dimensions: First, the
identified entity can be more or less like the
actual entity; second, the location of the iden-
tified entity can be displaced from the actual
entity’s true location; and third, the identifica-
tion can be more or less timely.

The workaround problem involves generat-
ing workarounds to military actions such as
bombing a bridge. Here, the criteria for suc-
cessful performance include coverage (the
generation of all workarounds generated),
appropriateness (the generation of work-
arounds appropriate given the action), speci-
ficity (the exact implementation of the work-
around), and accuracy of timing inferences
(the length each step in the workaround takes
to implement). 

Performance evaluation, although essential,
tells us relatively little about the HPKB inte-
grated systems, still less about the component
technologies. We also want to know why the
systems perform well or poorly. Answering this
question requires credit assignment because
the systems comprise many technologies. We
also want to gather evidence pertinent to sev-
eral important, general claims. One claim is
that HPKB facilitates rapid construction of
knowledge-based systems because ontologies
and knowledge bases can be reused. The chal-
lenge problems by design involve broad, rela-
tively shallow knowledge in the case of crisis
management and deep, fairly specific knowl-
edge in the battlespace problems. It is unclear
which kind of problem most favors the reuse
claim and why. We are developing analytic
models of reuse. Although the predictions of
these models will not be directly tested in the
first year’s evaluation, we will gather data to
calibrate these models for a later evaluation.

First, with DISCIPLE’s ontology-building tools,
a domain expert assisted by a knowledge engi-
neer built the object ontology from several
sources, including expert’s manuals, Alphate-
ch’s FIRE&ISE document and ISI’s LOOM ontology.
Second, a task taxonomy was defined by refin-
ing the task taxonomy provided by Alphatech.
This taxonomy indicates principled decomposi-
tions of generic workaround tasks into subtasks
but does not indicate the conditions under
which such decompositions should be per-
formed. Third, the examples of hierarchical
workaround plans provided by Alphatech were
used to teach DISCIPLE. Each such plan provided
DISCIPLE with specific examples of decomposi-
tions of tasks into subtasks, and the expert guid-
ed DISCIPLE to “understand” why each task
decomposition was appropriate in a particular
situation. From these examples and the expla-
nations of why they are appropriate in the giv-
en situations, DISCIPLE learned general task-
decomposition rules. After a knowledge base
consisting of an object ontology and task-
decomposition rules was built, the hierarchical
nonlinear planner of DISCIPLE was used to auto-
matically generate workaround plans for new
workaround problems.

Evaluation
The SAIC and Teknowledge integrated systems
for crisis management, movement analysis,
and workarounds were tested in an extensive
study in June 1998. The study followed a two-
phase, test-retest schedule. In the first phase,
the systems were tested on problems similar to
those used for system development, but in the
second, the problems required significant
modifications to the systems. Within each
phase, the systems were tested and retested on
the same problems. The test at the beginning
of each phase established a baseline level of
performance, but the test at the end measured
improvement during the phase. 

We claim that HPKB technology facilitates
rapid modification of knowledge-based sys-
tems. This claim was tested in both phases of
the experiment because each phase allows
time to improve performance on test prob-
lems. Phase 2 provides a more stringent test:
Only some of the phase 2 problems can be
solved by the phase 1 systems, so the systems
were expected to perform poorly in the test at
the beginning of phase 2. The improvement in
performance on these problems during phase
2 is a direct measure of how well HPKB tech-
nology facilitates knowledge capture, represen-
tation, merging, and modification.

Each challenge problem is evaluated by dif-
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Results of the Challenge 
Problem Evaluation

We present the results of the crisis-manage-
ment evaluation first, followed by the results
of the battle-space evaluation.

Crisis Management
The evaluation of the SAIC and Teknowledge
crisis-management systems involved 7 trials or
batches of roughly 110 questions. Thus, more
than 1500 answers were manually graded by
the challenge problem developer, IET, and sub-
ject matter experts at PSR on criteria ranging
from correctness to completeness of source
material to the quality of the representation of
the question. Each question in a batch was
posed in English accompanied by the syntax of
the corresponding parameterized question (fig-
ure 3). The crisis-management systems were
supposed to translate these questions into an
internal representation, MELD for the Teknowl-
edge system and KIF for the SAIC system. The
MELD translator was operational for all the tri-
als; the KIF translator was used to a limited
extent on later trials. 

The first trial involved testing the systems
on the sample questions that had been avail-
able for several months for training. The
remaining trials implemented the “test and
retest with scenario modification” strategy dis-
cussed earlier. The first batch of test questions,
TQA, was repeated four days later as a retest; it
was designated TQA’ for scoring purposes. The
difference in scores between TQA and TQA’
represents improvements in the systems. After
solving the questions in TQA’, the systems
tackled a new set, TQB, designed to be “close
to” TQA. The purpose of TQB was to check
whether the improvements to the systems gen-
eralized to new questions. After a short break,
a modification was introduced into the crisis-
management scenario, and new fragments of
knowledge about the scenario were released.
Then, the cycle repeated: A new batch of ques-
tions, TQC, tested how well the systems coped
with the scenario modification; then after four
days, the systems were retested on the same
questions, TQC’, and on the same day, a final
batch, TQD, was released and answered. 

Each question in a trial was scored according
to several criteria, some official and others
optional. The four official criteria were (1) the
correctness of the answer, (2) the quality of the
explanation of the answer, (3) the complete-
ness and quality of cited sources, and (4) the
quality of the representation of the question.
The optional criteria included lay intelligibility
of explanations, novelty of assumptions, qual-

ity of the presentation of the explanation, the
automatic production by the system of a repre-
sentation of the question, source novelty, and
reconciliation of multiple sources. Each ques-
tion could garner a score between 0 and 3 on
each criterion, and the criteria were themselves
weighted. Some questions had multiple parts,
and the number of parts was a further weight-
ing criterion. In retrospect, it might have been
clearer to assign each question a percentage of
the points available, thus standardizing all
scores, but in the data that follow, scores are
on an open-ended scale. Subject-matter
experts were assisted with scoring the quality
of knowledge representations when necessary.

A web-based form was developed for scor-
ing, with clear instructions on how to assign
scores. For example, on the correct-answer cri-
terion, the subject-matter expert was instruct-
ed to award “zero points if no top-level answer
is provided and you cannot infer an intended
answer; one point for a wrong answer without
any convincing arguments, or most required
answer elements; two points for a partially cor-
rect answer; three points for a correct answer
addressing most required elements.”

When you consider the difficulty of the task,
both systems performed remarkably well.
Scores on the sample questions were relatively
high, which is not surprising because these
questions had been available for training for
several months (figure 5). It is also not surpris-
ing that scores on the first batch of test ques-
tions (TQA) were not high. It is gratifying,
however, to see how scores improve steadily
between test and retest (TQA and TQA’, TQC
and TQC’) and that these gains are general:
The scores on TQA’ and TQB and TQC’ and
TQD were similar.

The scores designated auto in figure 5 refer
to questions that were translated automatically
from English into a formal representation. The
Teknowledge system translated all questions
automatically, the SAIC system very few. Ini-
tially, the Teknowledge team did not manipu-
late the resulting representations, but in later
batches, they permitted themselves minor
modifications. The effects of these can be seen
in the differences between TQB and TQB-Auto,
TQC and TQC-Auto, and TQD and TQD-Auto. 

Although the scores of the Teknowledge and
SAIC systems appear close in figure 5, differ-
ences between the systems appear in other
views of the data. Figure 6 shows the perfor-
mance of the systems on all official questions
plus a few optional questions. Although these
extra questions widen the gap between the sys-
tems, the real effect comes from adding
optional components to the scores. Here,
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sample questions, Teknowledge got perfect
scores on nearly 80 percent of the questions it
answered, and SAIC got perfect scores on near-
ly 70 percent of the questions it answered.
However, on TQA, TQA’, and TQB, the systems
are very similar, getting perfect scores on
roughly 60 percent, 70 percent, and 60 percent
of the questions they answered. The gap
widens to a roughly 10-percent spread in
Teknowledge’s favor on TQC, TQC’, and TQD.
Similarly, when one averages the scores of
answered questions in each trial, the averages
for the Teknowledge and SAIC systems are sim-
ilar on all but the sample-question trial. Even
so, the Teknowledge system had both higher
coverage (questions answered) and higher cor-
rectness on all trials. 

If one looks at the minimum of the official
component scores for each question—answer
correctness, explanation adequacy, source ade-
quacy, and representation adequacy—the dif-
ference between the SAIC and Teknowledge
systems is quite pronounced. Calculating the
minimum component score is like finding
something to complain about in each
answer—the answer or the explanation, the
sources or the question representation. It is the
statistic of most interest to a potential user
who would dismiss a system for failure on any
of these criteria. Figure 8 shows that neither
system did very well on this stringent criteri-
on, but the Teknowledge system got a perfect
or good minimum score (3 or 2) roughly twice
as often as the SAIC system in each trial. 

Teknowledge got credit for its automatic trans-
lation of questions and also for the lay intelli-
gibility of its explanations, the novelty of its
assumptions, and other criteria.

Recall that each question is given a score
between zero and three on each of four official
criteria. Figure 7 represents the distribution of
the scores 0, 1, 2, and 3 for the correctness cri-
terion over all questions for each batch of
questions and each system. A score of 0 gener-
ally means the question was not answered. The
Teknowledge system answered more questions
than the SAIC system, and it had a larger pro-
portion of perfect scores.

Interestingly, if one looks at the number of
perfect scores as a fraction of the number of
questions answered, the systems are not so dif-
ferent. One might argue that this comparison
is invalid, that one’s grade on a test depends
on all the test items, not just those one
answers. However, suppose one is comparing
students who have very different backgrounds
and preparation; then, it can be informative to
compare them on both the number and qual-
ity of their answers. The Teknowledge-SAIC
comparison is analogous to a comparison of
students with very different backgrounds.
Teknowledge used CYC, a huge, mature knowl-
edge base, whereas SAIC used CYC’s upper-level
ontology and a variety of disparate knowledge
bases. The systems were not at the same level
of preparation at the time of the experiment,
so it is informative to ask how each system per-
formed on the questions it answered. On the
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Movement Analysis
The task for movement analysis was to identify
sites—command posts, artillery sites, battle
positions, and so on—given data about vehicle
movements and some intelligence sources.
Another component of the problem was to
identify convoys. The data were generated by
simulation for an area of approximately
10,000 square kilometers over a period of
approximately 4 simulated days. The scenario
involved 194 military units arranged into 5
brigades, 1848 military vehicles, and 7666
civilian vehicles. Some units were collocated at
sites; others stood alone. There were 726 con-
voys and nearly 1.8 million distinct reports of
vehicle movement. 

Four groups developed systems for all or part
of the movement-analysis problem, and SAIC
and Teknowledge provided integration sup-
port. The groups were Stanford’s SMI, SRI,
UMass, and MIT. Each site identification was
scored for its accuracy, and recall and precision
scores were maintained for each site. Suppose
an identification asserts at time t that a battal-
ion command post exists at a location (x, y). To
score this identification, we find all sites with-
in a fixed radius of (x, y). Some site types are
very similar to others. For example, all com-
mand posts have similar characteristics; so, if
one mistakes a battalion command post for,
say, a division command post, then one
should get partial credit for the identification.
The identification is incorrect but not as incor-
rect as, say, mistaking a command post for an

artillery site. Entity error ranges from 0 for
completely correct identifications to 1 for
hopelessly wrong identifications. Fractional
entity errors provide partial credit for near-
miss identifications. If one of the sites within
the radius of an identification matches the
identification (for example, a battalion com-
mand post), then the identification score is 0,
but if none matches, then the score is the aver-
age entity error for the identification matched
against all the sites in the radius. If no site
exists within the radius of an identification,
then the identification is a false positive. 

Recall and precision rates for sites are
defined in terms of entity error. Let H be the
number of sites identified with zero entity
error, M be the number of sites identified with
entity error less than one (near misses), and R
be the number of sites identified with maxi-
mum entity error. Let T be the total number of
sites, N be the total number of identifications,
and F be the number of false positives. The fol-
lowing statistics describe the performance of
the movement-analysis systems:

zero-entity error recall = H / T
non-one-entity error recall = (H + M) / T
maximum-entity error recall

= (H + M + R) / T
zero-entity error precision = H / N
non–one-entity error precision 

= (H + M) / N
maximum-entity error precision 

= (H + M + R) / N
false positive rate = F / N
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15 percent and are not shown in figure 9. Of
the participating research groups, MIT did not
attempt to identify the types of site, only
whether sites are present; so, their entity error
is always maximum. The other groups did not
attempt to identify all kinds of site; for exam-
ple, UMass tried to identify only battle posi-
tions, command posts, and assembly-staging
areas. Even so, each group was scored against
all site types. Obviously, the scores would be
somewhat higher had the groups been scored
against only the kinds of site they intended to
identify (for example, recall rates for UMass
ranged from 20 percent to 39 percent for the
sites they tried to identify). 

Precision rates are reported only for the SMI
and UMass teams because MIT did not try to
identify the types of site. UMass’s precision
was highest on its first trial; a small modifica-
tion to its system boosted recall but at a signif-
icant cost to precision. SMI’s precision hovered
around 20 percent on all trials. 

Scores were much higher for convoy detec-
tion. Although scoring convoy identifications
posed some interesting technical challenges,
the results were plain enough: SMI, UMass,

Recall and precision scores for the groups are
shown in figure 9. The experiment design
involved two phases with a test and retest
within each phase. Additionally, the data sets
for each test included either military traffic
only or military plus civilian traffic. Had each
group run their systems in each experimental
condition, there would have been 4 tests, 2
data sets with 2 versions of each (military only
and military plus civilian), and 4 groups, or 64
conditions to score. All these conditions were
not run. Delays were introduced by the process
of reformatting data to make it compatible
with a scoring program, so scores were not
released in time for groups to modify their sys-
tems; one group devoted much time to scoring
and did not participate in all trials, and anoth-
er group participated in no trials for reasons
discussed at the end of this section.

The trials that were run are reported in fig-
ure 9. Recall rates range from 40 percent to just
over 60 percent, but these are for maximum-
entity error recall—the frequency of detecting
a site when one exists but not identifying it
correctly. Rates for correct and near-miss iden-
tification are lower, ranging from 10 percent to
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and MIT detected 507 (70 percent), 616 (85
percent), and 465 (64 percent) of the 726 con-
voys, respectively. The differences between
these figures do not indicate that one technol-
ogy was superior to another because each
group emphasized a slightly different aspect of
the problem. For example, SMI didn’t try to
detect small convoys (fewer than four vehi-
cles). In any case, the scores for convoy identi-
fications are quite similar. 

In sum, none of the systems identified site
types accurately, although they identified all
detected sites and convoys pretty well. The rea-
son for these results is that sites can be detect-
ed by observing vehicle halts, just as convoys
can be detected by observing clusters of vehi-
cles. However, it is difficult to identify site
types without more information. It would be
worth studying the types of information that
humans require for the task. 

The experience of SRI is instructive: The SRI
system used features of movement data to
infer site types; unfortunately, the data did not
seem to support the task. There were insuffi-
cient quantities of training data to train classi-
fiers (fewer than 40 instances of sites), but
more importantly, the data did not have suffi-
cient underlying structure—it was too random.
The SRI group tried a variety of classifier tech-
nologies, including identification trees, nearest
neighbor, and C4.5, but classification accuracy
remained in the low 30-percent range. This fig-
ure is comparable to those released by UMass
on the performance of its system on three
kinds of site. Even when the UMass recall fig-
ures are not diluted by sites they weren’t look-
ing for, they did not exceed 40 percent. SRI
and UMass both performed extensive ex-
ploratory data analysis, looking for statistically
significant relationships between features of
movement data and site types, with little suc-
cess, and the disclosed regularities were not
strongly predictive. The reason for these teams
found little statistical regularity is probably
that the data were artificial. It is extraordinari-
ly difficult to build simulators that generate
data with the rich dependency structure of
natural data.  

Some simulated intelligence and radar infor-
mation were released with the movement data.
Although none of the teams reported finding it
useful, we believe these kind of data probably
help human analysts. One assumes humans
perform the task better than the systems
reported here, but because no human ever
solved these movement-analysis problems,
one cannot tell whether the systems per-
formed comparatively well or poorly. In any
case, the systems took a valuable first step

toward movement analysis, detecting most
convoys and sites. Identifying the sites accu-
rately will be a challenge for the future.

Workarounds
The workaround problem was evaluated in
much the same way as the other problems: The
evaluation period was divided into two phases,
and within each phase, the systems were given
a test and a retest on the same problems. In the
first phase, the systems were tested on 20 prob-
lems and retested after a week on the same
problems; in the second phase, a modification
was introduced into the scenario, the systems
were tested on five problems and after a week
retested on the same five problems and five
new ones. 

Solutions were scored along five equally
weighted dimensions: (1) viability of enumer-
ated workaround options, (2) correctness of the
overall time estimate for a workaround, (3) cor-
rectness of solution steps provided for each
viable option, (4) correctness of temporal con-
straints among these steps, and (5) appropriate-
ness of engineering resources used. Scores were
assigned by comparing the systems’ answers
with those of human experts. Bonus points
were awarded when, occasionally, systems gave
better answers than the experts. These answers
became the gold standard for scoring answers
when the systems were retested. 

Four systems were fielded by ISI, GMU,
Teknowledge, and AIAI. The results are shown
in figures 10 and 11. In each figure, the upper
extreme of the vertical axis represents the max-
imum score a system could get by answering
all the questions correctly (that is, 200 points
for the initial phase, 50 points for the first test
in the modification phase, 100 points for the
retest in the modification phase). The bars rep-
resent the number of points scored, and the
circles represent the number of points that
could have been awarded given the number of
questions that were actually answered. For
example, in the initial phase, ISI answered all
questions, so it could have been awarded 200
points on the test and 200 on the retest; GMU
covered only a portion of the domain, and it
could have been awarded a maximum of 90
and 100 points, respectively. The bars repre-
sent the number of points actually scored by
each system. 

How one views the performance of these
systems depends on how one values correct-
ness; coverage (the number of questions
answered); and, more subtly, the prospects for
scaling the systems to larger problem sets. An
assistant should answer any question posed to
it, but if the system is less than ideal, should it

What we
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Two factors complicate comparisons be-
tween the systems. First, if one is allowed to
select a subset of problems for one’s system to
solve, one might be expected to select prob-
lems on which one hopes the system will do
well. Thus, ISI’s correctness scores are not
strictly comparable to those of the other sys-
tems because ISI did not select problems but
solved them all. Said differently, what we call
correctness is really “correctness in one’s
declared scope.” It is not difficult to get a per-
fect correctness score if one selects just one
problem; conversely, it is not easy to get a high
correctness score if one solves all problems. 

Second, Figure 12 shows that coverage can
be increased by knowledge engineering, but at
what cost to correctness? GMU believes cor-
rectness need not suffer with increased cover-
age and cites the rapid growth of its knowledge
base. At the beginning of the evaluation peri-
od, the coverage of the knowledge base was
about 40 percent (11841 binary predicates),
and two weeks later, the coverage had grown
significantly to roughly 80 percent of the
domain (20324 binary predicates). In terms of
coverage and correctness (figure 12), GMU’s
coverage increased from 47.5 percent in the
test phase to 80 percent in the modification
phase, with almost no decrement in correct-
ness. However, ISI suggests that the complexity
of the workaround task increases significantly
as the coverage is extended, to the point where
a perfect score might be out of reach given the

answer more questions with some errors or
fewer questions with fewer errors? Obviously,
the answer depends on the severity of errors,
the application, and the prospect for improv-
ing system coverage and accuracy. What we
might call errors of specificity, in which an
answer is less specific or complete than it
should be, are not inconsistent with the phi-
losophy of HPKB, which expects systems to
give partial—even commonsense—answers
when they lack specific knowledge. 

Figures 10 and 11 show that USC-ISI was the
only group to attempt to solve all the
workaround problems, although its answers
were not all correct, whereas GMU solved fewer
problems with higher overall correctness. AIAI
solved fewer problems still, but quite correctly,
and Teknowledge solved more problems than
AIAI with more variable correctness. One can
compute coverage and correctness scores as fol-
lows: Coverage is the number of questions
attempted divided by the total number of ques-
tions in the experiment (55 in this case). Cor-
rectness is the total number of points awarded
divided by the number of points that might
have been awarded given the number of
answers attempted. Figure 12 shows a plot of
coverage against correctness for all the
workaround systems. Points above and to the
right of other points are superior; thus, the ISI
and GMU systems are preferred to the other sys-
tems, but the ranking of these systems depends
on how one values coverage and correctness. 
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state of the art in AI technology. For example,
in some cases, the selection of resources
requires combining plan generation with rea-
soning about temporal aspects of the (partially
generated) plan. Moreover, interdependencies
in the knowledge bases grow nonlinearly with
coverage because different aspects of the
domain interact and must be coordinated. For
example, including mine-clearing operations
changes the way one looks at how to ford a riv-
er. Such interactions in large knowledge bases
might degrade the performance of a system
when changes are made during a retest and
modification phase.

The coverage versus correctness debate
should not cloud the accomplishments of the
workaround systems. Both ISI and GMU were
judged to perform the workaround task at an
expert level. All the systems were developed
quite rapidly—indeed, GMU’s knowledge base
doubled during the experimental period
itself—and knowledge reuse was prevalent.
These results take us some way toward the
HPKB goal of very rapid development of pow-
erful and flexible knowledge base systems. 

Evaluation Lessons Learned
The experiments reported here constitute one
of the larger studies of AI technology. In addi-
tion to the results of these experiments, much
was learned about how to conduct such stud-
ies. The primary lesson is that one should

release the challenge problem specifications
early. Many difficulties can be traced to delays
in the release of the battlespace specifications.
Experiment procedures that involve multiple
sites and technologies must be debugged in
dry-run experiments before the evaluation
period begins. There must be agreement on
the formats of input data, answers, and
answer keys—a mundane requirement but
one that caused delays in movement-analysis
evaluation. 

A major contributor to the success of the cri-
sis-management problem was the parameter-
ized question syntax, which gave all partici-
pants a concise representation of the kinds of
problem they would solve during the evalua-
tion. Similarly, evaluation metrics for crisis
management were published relatively early.
Initially, there was a strong desire for evalua-
tion criteria to be objective enough for a
machine to score performance. Relaxing this
requirement had a positive effect in crisis man-
agement. The criteria were objective in the
sense that experts followed scoring guidelines,
but we could ask the experts to assess the qual-
ity of a system’s explanation—something no
program can do. However, scoring roughly
1500 answers in crisis management took its
toll on the experts and IET. It is worth consid-
ering whether equally informative results
could be had at a lower cost. 

The HPKB evaluations were set up as friend-
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Lighter bars represent test scores; darker bars represent retest scores. Circles represent the scope of the task attempted by each system,
that is, the best score that the system could have received given the number of questions it answered. Note that only 5 problems were
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were constructed rapidly from many sources,
reuse of knowledge was a significant factor,
and semantic integration across knowledge
bases started to become feasible. HPKB has
integrated many technologies, cutting
through traditional groupings in AI, to devel-
op new ways of acquiring, organizing, sharing,
and reasoning with knowledge, and it has
nourished a remarkable assault on perhaps the
grandest of the AI grand challenges—to build
intelligent programs that answer questions
about everyday things, important things like
international relations but also ordinary things
like river banks.
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Notes
1. Many HPKB resources and documents are
found at www.teknowledge.com/HPKB. A web
site devoted to the Year 1 HPKB Challenge
Problem Conference can be found at www.
teknowledge.com/HPKB/meetings/Year1meet-
ing/. Definitive information on the year 1 cri-
sis-management challenge problem, including
updated specification, evaluation procedures,
and evaluation results, is available at www.iet.
com/Projects/HPKB/Y1Eval/. Earlier, draft
information about both challenge problems is
available at www.iet.com/Projects/ HPKB/
Combined-CPs.doc. Scoring procedures and
data for the movement-analysis problem are
available at eksl-www.cs.umass.edu:80/re-
search/hpkb/scores/. For additional sources,
contact the authors.

2. These numbers and all information regard-
ing MTI radar are approximate; actual figures
are classified.
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ly competitions between the integration
teams, SAIC and Teknowledge, each incorpo-
rating a subset of the technology in a unique
architecture. However, some technology was
used by both teams, and some was not tested
in integrated systems but rather as stand-alone
components. The purpose of the friendly com-
petition—to evaluate merits of different tech-
nologies and architectures—was not fully real-
ized. Given the cost of developing HPKB
systems, we might reevaluate the purported
and actual benefits of competitions. 

Conclusion
HPKB is an ambitious program, a high-risk,
high-payoff venture beyond the edge of
knowledge-based technology. In its first year,
HPKB suffered some setbacks, but these were
informative and will help the program in
future. More importantly, HPKB celebrated
some extraordinary successes. It has long been
a dream in AI to ask a program a question in
natural language about almost anything and
receive a comprehensive, intelligible, well-
informed answer. Although we have not
achieved this aim, we are getting close. In
HPKB, questions were posed in natural lan-
guage, questions on a hitherto impossible
range of topics were answered, and the
answers were supported by page after page of
sources and justifications. Knowledge bases
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